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Abstract. This article describes qregsel, a Stata module to implement a copula-
based sample selection correction for quantile regression recently proposed by Arel-
lano and Bonhomme (2017, Econometrica 85(1): 1-28). The command allows the
user to model selection in quantile regressions using either a Gaussian or an one-
dimensional Frank copula. We illustrate the use of qregsel with two examples.
First, we apply the method to the fictional data set employed in the Stata base
reference manual for the heckman command. Second, we replicate part of the em-
pirical application of the original paper using data for the UK that covers the
period 1978-2000 to compare wages of males and females at different quantiles.
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1 Introduction

Non-random sample selection is a well known issue in empirical economics. Since the
seminal work of Heckman (1979) addressing this problem, much progress has been
made in methods that extend the original model or relax some of its assumptions. For
example, Vella (1998) provides a survey of methods for estimating models with sample
selection bias in this line.

Although most of the effort has been focused on models that estimate the conditional
mean, the literature in econometrics has also tackled the problem of non-random sample
selection in the context of quantile regression. For example, Arellano and Bonhomme
(2017a) offer a survey of recently proposed methods with a focus on a copula-based
sample selection model suggested in Arellano and Bonhomme (2017b).

As discussed in Arellano and Bonhomme (2017a), the flexible copula-based approach
has an advantage over methodologies that are based on the control function approach.
The latter impose conditions on the data that may not be compatible with quantile
models if the model is non-additive with non-linear quantile curves on the selected
sample (see Huber and Melly 2015).

In this paper, we briefly discuss the copula-based approach proposed by Arellano and
Bonhomme (2017b) and present a new Stata module called qregsel that implements it.1

In addition, we illustrate the method with two empirical examples. First, we estimate a

1. A copula-based maximum-likelihood method for the conditional mean is already available in Stata
(see Hasebe 2013).
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quantile regression model with sample selection using the Stata base reference manual
example for the heckman command. Second, we replicate the analysis of wage inequality
in the UK for the period 1978-2000 as in the original paper.

The paper is organized as follows. Section 2 describes the methodology. Section 3
describes the qregsel command and its syntax. In section 4 we illustrate the use of the
command with the empirical examples, and we conclude in Section 5.

2 Methodology

In this section we briefly review the quantile selection model of Arellano and Bonhomme
(2017b). The goal is to obtain a consistent estimator when there is sample selection
in a non-additive model, such as quantile regression, which precludes the use of the
control function approach. The assumption of additive separability of observables and
unobservables in the output equation does not hold in general, as argued by Huber and
Melly (2015) in the context of testing.

2.1 The Model

Sample selection is modeled using a bivariate cumulative distribution function or cop-
ula of the percentile error in the latent outcome equation and the error in the sample
selection equation. The copula parameters are estimated by minimizing a method-
of-moments criterion that exploits variation in excluded regressors to achieve credible
identification. Then the quantile regression parameters are obtained by minimizing a ro-
tated check function, which preserves the linear programming structure of the standard
linear quantile regression (see Koenker and Bassett 1978).

Consider a general outcome equation specification where the quantile functions are
linear:

Y ∗ = Q(U,X) = x′β(τ) (1)

where Y ∗ is the the latent outcome variable (e.g. wage offers), the function Q is the
τ -th conditional quantile of Y ∗ given the covariates X (e.g. education, experience, etc.),
and U is the error term of the outcome equation.

The participation equation is defined as:

D = I{V ≤ p(Z)} (2)

where D takes values equal to 1 when the latent variable is observable (e.g. employment)
and 0 otherwise, Z contains X and at least one covariate B that do not appear in
the outcome equation (e.g., a determinant of employment that does not affect wages
directly), p(Z) is a propensity score, and V is an error term of the selection equation.
Hence, we observe (Y,D,Z ) where Y = Y ∗ only when D=1.

Under the set of assumptions2 detailed in Arellano and Bonhomme (2017b), we have

2. Assumptions: 1) Z is independent of (U,V)|X (exclusion restriction), 2) absolutely continuous
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that the cdf of Y* conditional on participation and for all τ ∈ (0, 1) is:

Pr(Y ∗ ≤ x′β(τ)|D = 1, Z = z) = Pr(U ≤ τ |V ≤ p(z), Z = z) = Gx(τ, p(z)) (3)

where Gx ≡ C(τ, p)/p is the conditional copula function, which measures the depen-
dence between U and V. Here Gx maps rank τ in the distribution of latent outcomes
(given X=x ) to ranks Gx(τ, p(z)) in the distribution of observed outcomes conditional
on participation (given Z=z ). Namely, the conditional Gx(τ, p(z))-quantile of observed
outcomes (that is, when D = 1) coincides with the conditional τ -quantile of latent out-
comes, which implies that if we are able to estimate the mapping Gx(τ, p) from latent
to observed ranks, we are able to recover Q(τ, x) from the observed outcomes (i.e. we
are able to estimate the τ -quantile correcting for selection).

To implement the method, we assume that the copula function is indexed by a single
parameter such that:

Gx(τ, p) ≡ G(τ, p; ρ) =
C(τ, p; ρ)

p
(4)

where the numerator is the unconditional copula of (U,V), the denominator is the
propensity score, and ρ is the copula parameter that governs the dependence between
the error in the outcome equation and the error in the participation decision.

2.2 Estimation

Arellano and Bonhomme (2017b)’s estimation algorithm can be summarized in 3 steps:
estimation of the propensity score, estimation of the degree of selection via the cumula-
tive distribution function of the percentile error in the outcome equation and the error
in the participation decision, and then, using the estimated parameter, the computation
of quantile estimates through rotated quantile regression.

The first step consists of estimating the propensity score γ by a probit regression:

γ̂ = argmaxa

N∑
i=1

DilnΦ(Z ′ia) + (1−Di)lnΦ(−Z ′ia) (5)

The second step is to estimate ρ by minimizing a method-of-moments objective func-
tion, which allow us to obtain an observation-specific measure of dependence between
the rank error in the equation of interest and the rank error in the selection equation.
This is accomplished with a grid search over different values of ρ such that:

ρ̂ = argminc‖
N∑
i=1

L∑
l=1

Diϕ(τl, Zi)[1{Yi ≤ X ′iβ̂(τl, c)} −G(τl,Φ(Z ′i; γ̂), c)]‖ (6)

bivariate distribution of (U,V)|X=x with standard uniform marginals and rectangular support, 3)
continuous outcome, and 4) propensity score, p(z)>0 with probability 1.
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where ‖.‖ is the Euclidean norm, τ1 < τ2 < . . . < τL is a finite grid on (0, 1), and the
instrument functions are defined as ϕ(τ, Zi) where the dim ϕ ≤ dim ρ and:

β̂τ (c) = argminb(τ)

N∑
i=1

Di[G(τ,Φ(Z ′iγ̂); c)(Yi −X ′ib(τ))+ + (7)

(1−G(τ,Φ(Z ′iγ̂); c))(Yi −X ′ib(τ))−] (8)

where a+ = max{a, 0}, a− = max{−a, 0}, and the grid of τ values on the unit interval
as well as the instrument function are chosen by the researcher.3

Lastly, using γ̂ and ρ̂ obtained above, the third step consists in computing Ĝτi =
G(τ,Φ(Z

′

i γ̂); ρ̂) for all i to estimate β(τ) by minimizing a rotated check function of the
form:

β̂(τ) = argminb(τ)

N∑
i=1

Di[Ĝτi(Yi −X ′ib(τ))+ + (1− Ĝτi)(Yi −X ′ib(τ))−] (9)

where β̂(τ) will be a consistent estimator of the τ -th quantile regression coefficient.

Note that the third step is unnecessary if the quantiles of interest are included in
the set τ1 < τ2 < . . . < τL used in the second step.

2.3 Copulas

The Arellano and Bonhomme (2017a) analysis covers the case where the copula is left
unrestricted but for the implementation they focus on the case of identification where
the copula depends on a low-dimensional vector of parameters.

In our empirical implementation, we only consider the case of a reduced set of one-
dimensional copulas. We include the Gaussian and an one-parameter Frank. Table 1
provides their respective functional forms.

Table 1: Copula functions

Copula name C(U, V ; ρ) Range of ρ

Gaussian Φ2{Φ−1(U),Φ−1(V ); ρ} −1 ≤ ρ ≤ 1

Frank −ρ−1log{1 + (e−ρU−1)(e−ρV −1)
(e−ρ−1) } −∞ ≤ ρ ≤ ∞

3. In our implementation we use a grid of 9 values (0.1,0.2,...,0.9), and ϕ(τl, Zi) = ϕ(Zi) = p(Zi; ρ̂)
as in Arellano and Bonhomme (2017b) empirical example.
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2.4 Measures of dependence

The parameter ρ that governs the degree of dependence is not directly comparable across
copulas (see Hasebe 2013). For this reason, researchers often report Kendall’s τ or the
Spearman rank correlation coefficient as a measure of the degree of dependence. Both
measures take the range of [−1, 1], where a value closer to 1 (-1) indicates a stronger
(negative) dependence, and in the case of our copulas can be expressed as closed form
in terms of ρ (see Table 2).

Table 2: Copula functions and measures of dependence

Copula name Range of ρ Kendall’s τ Spearman’s rank correlation

Gaussian −1 ≤ ρ ≤ 1 2
π sin

−1(ρ) 6
π sin

−1(ρ/2)

Frank −∞ ≤ ρ ≤ ∞ 1 + 4
ρ{D1(ρ)− 1} 1 + 12

ρ {D2(ρ)−D1(ρ)}

Notes: Dn(ρ) is a Debye function, where Dn(ρ) = n
ρn

∫ ρ
0

tn

et−1dt.

2.5 Rotated quantile regression

As previously mentioned, the quantile estimates are obtained by minimizing a rotated
check function (see equation 9). The minimization problem can be written as the
following linear programming problem:4

Minβτ ,u,v

N∑
i=1

Ĝτiui + (1− Ĝτi)vi (10)

such that:

y −Xβτ = u− v (11)

u ≥ 0n (12)

v ≥ 0n (13)

where 0n is a vector of 0s, X is the matrix of observations of the covariates, y is the
vector of observations of the outcome, and u and v are added to the inequality constraint
to transform it into an equality.

This linear programming problem could be solved using the LinearProgram() class in
Stata or alternatively using the Stata integration with Python. However, we implement
an interior point algorithm developed by Portnoy and Koenker (1997) by translating
the Matlab code used by Arellano and Bonhomme (2017b) to Mata language.5

4. This closely follows the quantile regression example for linear programming available in the Mata
reference manual (see example 3 for LinearProgram() in StataCorp (2019a)).

5. The Matlab’s routine was originally written by Daniel Morillo and Roger Koenker in Ox, trans-
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3 The qregsel command

In this section we describe the qregsel command to implement a copula-based sample
selection correction in quantile regression.

3.1 Syntax

The syntax of the qregsel command is:

qregsel depvar
[
indepvars

] [
if
] [

in
]
, select(

[
depvarS =

]
varlistS)

quantile(#)
[

copula(copula) noconstant finergrid coarsergrid rescale

nodots
]

3.2 Options

select(
[
depvarS =

]
varlistS) specifies the selection equation. If depvarS is specified,

it should be coded as 0 and 1, with 0 indicating an outcome not observed for an
observation and 1 indicating an outcome observed for an observation. select() is
required.

quantile(#) estimate # quantiles. quantile() is required.

copula(copula) specifies a copula function governing the dependence between the errors
in the outcome equation and selection equation. copula may be gaussian or frank.
The default is copula(gaussian).

noconstant suppresses the constant term in the outcome equation.

finergrid finds the value of the copula parameter using a grid of 199 values (values
such that the Spearman rank correlation is approximately [-0.99,-0.985,..,0.985,0.99])
instead of 100 (values such that the Spearman rank correlation is approximately [-
0.99,-0.98,..,0.98,0.99]), as done by default.

coarsergrid finds the value of the copula parameter using a grid of 50 values (values
such that the Spearman rank correlation is approximately [-0.99,-0.95,..,0.93,0.97])
instead of 100 (values such that the Spearman rank correlation is approximately
[-0.99,-0.98,..,0.98,0.99]), as done by default.

rescale transforms the independent variables in the outcome equation by subtracting
from each its sample mean and dividing each by its standard deviation.

nodots suppresses progress dots that indicate status over the grid search.

lated to Matlab by Paul Eilers, and slightly modified by Roger Koenker. It can be found in the
supplemental material of Arellano and Bonhomme (2017b), and in Roger Koenker’s website.
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3.3 Returned values

qregsel saves the following in e():

Scalars
e(N) Number of observations e(N selected) Number of selected observations
e(rho) Copula parameter e(kendall) Kendall’s tau
e(spearman) Spearman’s rank correlation

Macros
e(copula) Specified copula e(depvar) Dependent variable
e(indepvars) Independent variables e(cmdline) Command line
e(outcome eq) Outcome equation e(select eq) Selection equation
e(cmd) Command name e(predict) Predict command name
e(rescale) Use of rescale option e(title) Quantile selection model
e(properties) b

Matrices
e(b) Coefficient vector e(grid) Matrix with the values of the ob-

jective function for each value of
rho, and its respective Spearman
rank correlation and Kendall’s
tau

e(coefs) Coefficient matrix

Functions
e(sample) Marks estimation sample

3.4 Prediction

After the execution of qregsel, the predict command is available to compute a coun-
terfactual of the outcome variable corrected for sample selection. Here is its syntax:

predict newvarlist
[
if
] [

in
]

where the list of new variables must contain two new variable names, the first one
for the counterfactual outcome variable, and the second one for a binary indicator of
selection, to be generated respectively.

The counterfactual outcomes are constructed by randomly generating an integer q
between 1 and 99 for each individual in the full sample, and then using the quantile
coefficients associated with each draw of q to produce a prediction of the qth quantile of
the outcome distribution. This approach follows the conditional quantile decomposition
method of Machado and Mata (2005) and has been recently applied for example in
Bollinger et al. (2019).

The selection indicator is generated by randomly drawing values of the error in the
selection equation V from the conditional distribution of V given U=u, derived from
the chosen copula using the estimated copula parameter and the values of U randomly
generated to create the counterfactual outcome variable in the previous paragraph. This
approach follows the empirical exercise performed in Arellano and Bonhomme (2017b).
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3.5 Inference

Confidence intervals for any of the parameters can be estimated using methods such
as the conventional nonparametric bootstrap, or alternatively using subsampling (see
Politis et al. 1999) as done in Arellano and Bonhomme (2017b) due to the computational
advantage when using large sample sizes.

In our first empirical application we illustrate how to use bootstrap to create a
confidence interval for the estimated coefficients of the quantile regression and the copula
parameter.

4 Empirical Examples

In this section we illustrate the use of the command with two empirical examples. First,
we use the classic example of wages of women in which we use the data available from
the Stata manual example for the command heckman. Second, we replicate part of an
exercise presented in Arellano and Bonhomme (2017b) with data from the UK.

4.1 Wages of women

In this application we use the fictional data set used in the documentation of the Heck-
man selection model in the Stata base reference manual (see StataCorp 2019b) to study
wages of women. As in the example, we assume that the hourly wage is a function of
education and age, whereas the likelihood of working (and hence the wage being ob-
served) is a function of marital status, the number of children at home, and (implicitly)
the wage (via the inclusion of age and education). We do not take the logarithm of
wage as it is usually done, however the variable in the fictional data set has already a
bell-shaped histogram. In addition, we follow the example in the Stata 16 base reference
manual by not including squared age as it is standard in this type of regression.

First, we estimate a quantile regression over the quantiles 0.1, 0.5, and 0.9 without
corrections for sample selection as a benchmark.

. webuse womenwk,clear

. sqreg wage educ age, quantile(.1 .5 .9)
(fitting base model)

Bootstrap replications (20)
1 2 3 4 5

....................

Simultaneous quantile regression Number of obs = 1,343
bootstrap(20) SEs .10 Pseudo R2 = 0.1068

.50 Pseudo R2 = 0.1429

.90 Pseudo R2 = 0.1523

Bootstrap
wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

q10
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education .8578176 .0822727 10.43 0.000 .6964203 1.019215
age .1234271 .0206434 5.98 0.000 .0829302 .1639239

_cons .5154006 1.256476 0.41 0.682 -1.949473 2.980274

q50
education .9064927 .0638967 14.19 0.000 .7811443 1.031841

age .160184 .0313763 5.11 0.000 .098632 .2217359
_cons 5.312029 1.007443 5.27 0.000 3.335692 7.288366

q90
education .930661 .0856044 10.87 0.000 .7627278 1.098594

age .1579835 .0462329 3.42 0.001 .0672868 .2486803
_cons 12.20975 1.55745 7.84 0.000 9.154448 15.26506

Next we turn to the estimation of a quantile regression accounting for sample se-
lection by using the command qregsel with a Gaussian copula. In addition, we plot
the value of the objective function over the minimization grid (see Figure 1). The value
of rho that minimizes the criterion function is approximately equal to -0.65, as stored
in e(rho). The interpretation of this estimated value is that women with higher wages
(higher U) tend to participate more (lower V).

. global wage_eqn wage educ age

. global seleqn married children educ age

. qregsel $wage_eqn, select($seleqn) quantile(.1 .5 .9)
Grid for the copula parameter (100)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
..................................................
..................................................

Quantile selection model Number of obs = 2000
Selected = 1343
Nonselected = 657

Copula parameter (gaussian): -0.65

wage Coef.

q10
education 1.112866

age .204362
_cons -8.498507

q50
education 1.017025

age .2028979
_cons .5828089

q90
education .8888879

age .2272004
_cons 8.914994

. ereturn list

scalars:
e(N) = 2000

e(N_selected) = 1343
e(rho) = -.647834836
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e(kendall) = -.43389025
e(spearman) = -.63

macros:
e(copula) : "gaussian"
e(depvar) : "wage"

e(indepvars) : "education age _cons"
e(cmdline) : "qregsel wage education age, select(married children educ age)"

e(outcome_eq) : "wage education age"
e(select_eq) : "married children educ age"

e(cmd) : "qregsel"
e(predict) : "qregsel_p"
e(rescale) : "non-rescaled"
e(title) : "Quantile selection model"

e(properties) : "b"

matrices:
e(b) : 1 x 9

e(grid) : 100 x 4
e(coefs) : 3 x 3

functions:
e(sample)

. svmat e(grid), name(col)

. qui gen lvalue = log10(value)

. twoway connected lvalue spearman

After the estimation a counterfactual distribution that is corrected for sample selec-
tion may be generated with the post estimation command predict as follows. Figure 2
displays the ventiles of the distribution corrected for sample selection versus the uncor-
rected one. We can see how wages are lower after correcting for selection at each ventile
of the distribution.

. set seed 1

. predict wage_hat participation

. _pctile wage_hat, nq(20)

. mat qs = J(19,3,.)

. forvalues i=1/19 {
2. mat qs[`i´,1] = r(r`i´)
3. }

. _pctile wage, nq(20)

. forvalues i=1/19 {
2. mat qs[`i´,2] = r(r`i´)
3. mat qs[`i´,3] = `i´
4. }

. svmat qs, name(quantiles)

. twoway connected quantiles1 quantiles2 quantiles3, ///
> xtitle("Ventile") ytitle("Wage") legend(order(1 "Corrected" 2 "Uncorrected"))

Finally, we illustrate the use of the bootstrap command to construct a confidence
interval for the coefficients associated to three different quantiles and the copula param-
eter ρ using 100 replications.

. bootstrap rho=e(rho) _b, reps(100) seed(2) notable: qregsel $wage_eqn, ///
> select($seleqn) quantile(.1 .5 .9)
(running qregsel on estimation sample)
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Figure 1: Grid for minimization
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Bootstrap results Number of obs = 2,000
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command: qregsel wage educ age, select(married children educ age) quantile(.1 .5 .9)
[_eq4]rho: e(rho)

. estat bootstrap, percentile

Bootstrap results Number of obs = 2,000
Replications = 100

command: qregsel wage educ age, select(married children educ age) quantile(.1 .5 .9)
[_eq4]rho: e(rho)

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

q10
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Figure 2: Corrected versus uncorrected quantiles
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Ventile

Corrected Uncorrected

education 1.1128663 -.0369692 .14707968 .7483546 1.322367 (P)
age .20436202 -.0065281 .04903284 .0912168 .2998732 (P)

_cons -8.4985072 .7444134 2.4852059 -11.27083 -2.926636 (P)

q50
education 1.0170248 .009136 .07041415 .9073696 1.155043 (P)

age .20289786 .0008091 .02794803 .1479627 .2588321 (P)
_cons .58280893 -.1804622 1.3881311 -1.880296 2.965075 (P)

q90
education .88888792 .015074 .06247303 .7735702 1.034392 (P)

age .22720039 -.0033785 .02609233 .1670902 .2715747 (P)
_cons 8.9149942 -.1022546 1.1223106 6.964433 10.89201 (P)

_eq4
rho -.64783484 -.0216367 .07354153 -.8230287 -.5277461 (P)

(P) percentile confidence interval
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4.2 Wage inequality in UK

In this example we apply the model to measure market-level changes in wage inequality
in the UK. We compare wages of males and females at different quantiles of the wage
distribution, correcting for selection into work. We replicate Arellano and Bonhomme
(2017b) using the data set provided by the authors, which originally comes from the
Family Expenditure Survey (FES) from 1978 to 2000.6

We model log-hourly wages Y and employment status D. The controls X include
linear, quadratic, and cubic time trends, four cohort dummies (born in 1919-1934, 1935-
1944, 1955-1964, and 1965-1977, omitting 1945-1954), two education dummies (end of
schooling at 17 or 18, and end of schooling after 18), 11 regional dummies, marital
status, and the number of kids split by age categories (six dummies, from 1 year old to
17-18 years old).

The excluded regressor follows Blundell et al. (2003) and corresponds to their mea-
sure of potential out-of-work (welfare) income, interacted with marital status. This
variable was constructed for each individual in the sample using the Institute of Fiscal
Studies tax and welfare-benefit simulation model.

Arellano and Bonhomme (2017b) estimate the sample selection model independently
by gender and marital status. We replicate (see code below) the exercise reported in the
paper using a Frank copula and find that the copula parameter in the case of married
individuals is -1.548 for males and -1.035 for females (the associated rank correlations
are -0.250 and -0.170, respectively). For single individuals is -7.638 for males and -0.421
for females (the respective rank correlations are -0.790 and -0.070). After the estimation
using each sub-sample, we use predict to generate counterfactual outcomes, which are
then used to plot quantiles by gender with and without correction for sample selection
over time. We are able to replicate the empirical facts documented in the original
paper (see Figure 3). We see that correcting for sample selection makes an important
difference at the bottom of the wage distribution for males while the difference seems
to be less important in the case of women.

. ** Female and single

. set seed 3

. use data_2 if married==0,clear

. global wage_eqn lw ed17 ed18 trend1 trend2 trend3 c1919_34 c1935_44 c1955_64 ///
> c1965_77 reg_d1 reg_d2 reg_d3 reg_d4 reg_d5 reg_d6 reg_d7 reg_d8 reg_d9 ///
> reg_d10 reg_d11 kids_d1 kids_d2 kids_d3 kids_d4 kids_d5 kids_d6

. global seleqn s_zero ed17 ed18 trend1 trend2 trend3 c1919_34 c1935_44 ///
> c1955_64 c1965_77 reg_d1 reg_d2 reg_d3 reg_d4 reg_d5 reg_d6 reg_d7 reg_d8 ///
> reg_d9 reg_d10 reg_d11 kids_d1 kids_d2 kids_d3 kids_d4 kids_d5 kids_d6

. qregsel $wage_eqn, select($seleqn) rescale quantile(50) copula(frank) finergrid
Grid for the copula parameter (199)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
..................................................
..................................................
..................................................
.................................................

6. The data and replication codes can be found here.

https://www.econometricsociety.org/publications/econometrica/2017/01/01/quantile-selection-models-application-understanding-changes
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Quantile selection model Number of obs = 23583
Selected = 15185
Nonselected = 8398

Copula parameter (frank): -0.42

lw Coef.

q50
ed17 .1107013
ed18 .2078859

trend1 -.0541206
trend2 .4185438
trend3 -.2659457

c1919_34 -.0203966
c1935_44 -.0127007
c1955_64 -.0211737
c1965_77 -.064329
reg_d1 .007508
reg_d2 .0145522
reg_d3 .02818
reg_d4 .0140872
reg_d5 .0236211
reg_d6 .0070201
reg_d7 .1256261
reg_d8 .0708555
reg_d9 .0187373
reg_d10 .0041181
reg_d11 .032367
kids_d1 -.0102305
kids_d2 -.0126629
kids_d3 -.0342705
kids_d4 -.0577489
kids_d5 -.0541355
kids_d6 -.0115029
_cons 1.76145

. matlist e(rho)

c1

r1 -.421

. predict yhat participation

. keep yhat lw year

. tempfile data_2_single

. qui save `data_2_single´

.

. ** Female and married

. use data_2 if married==1,clear

. global seleqn m_zero ed17 ed18 trend1 trend2 trend3 c1919_34 c1935_44 ///
> c1955_64 c1965_77 reg_d1 reg_d2 reg_d3 reg_d4 reg_d5 reg_d6 reg_d7 reg_d8 ///
> reg_d9 reg_d10 reg_d11 kids_d1 kids_d2 kids_d3 kids_d4 kids_d5 kids_d6

. qui: qregsel $wage_eqn, select($seleqn) rescale quantile(50) copula(frank) finergrid

. matlist e(rho)

c1

r1 -1.035

. predict yhat participation
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. keep yhat lw year

. tempfile data_2_married

. qui save `data_2_married´

.

. ** Male and single

. use data_1 if married==0,clear

. global seleqn s_zero ed17 ed18 trend1 trend2 trend3 c1919_34 c1935_44 ///
> c1955_64 c1965_77 reg_d1 reg_d2 reg_d3 reg_d4 reg_d5 reg_d6 reg_d7 reg_d8 ///
> reg_d9 reg_d10 reg_d11 kids_d1 kids_d2 kids_d3 kids_d4 kids_d5 kids_d6

. qui: qregsel $wage_eqn, select($seleqn) rescale quantile(50) copula(frank) finergrid

. matlist e(rho)

c1

r1 -7.638

. predict yhat participation

. keep yhat lw year

. tempfile data_1_single

. qui save `data_1_single´

.

. ** Male and married

. use data_1 if married==1,clear

. global seleqn m_zero ed17 ed18 trend1 trend2 trend3 c1919_34 c1935_44 ///
> c1955_64 c1965_77 reg_d1 reg_d2 reg_d3 reg_d4 reg_d5 reg_d6 reg_d7 reg_d8 ///
> reg_d9 reg_d10 reg_d11 kids_d1 kids_d2 kids_d3 kids_d4 kids_d5 kids_d6

. qui: qregsel $wage_eqn, select($seleqn) rescale quantile(50) copula(frank) finergrid

. matlist e(rho)

c1

r1 -1.548

. predict yhat participation

. keep yhat lw year

. tempfile data_1_married

. qui save `data_1_married´

.

. ** Plotting quantiles

. use `data_2_married´,clear

. append using `data_2_single´

.

. forvalues i=78(1)100 {
2. _pctile yhat if year==`i´, p(10 20 30 40 50 60 70 80 90)
3. mat qs = 1,`i´,r(r1),r(r2),r(r3),r(r4),r(r5),r(r6),r(r7),r(r8),r(r9)\nullmat(qs)
4. }

. forvalues i=78(1)100 {
2. _pctile lw if year==`i´, p(10 20 30 40 50 60 70 80 90)
3. mat qs = 2,`i´,r(r1),r(r2),r(r3),r(r4),r(r5),r(r6),r(r7),r(r8),r(r9)\qs
4. }

.

. use `data_1_married´,clear

. append using `data_1_single´

.

. forvalues i=78(1)100 {
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2. _pctile yhat if year==`i´, p(10 20 30 40 50 60 70 80 90)
3. mat qs = 3,`i´,r(r1),r(r2),r(r3),r(r4),r(r5),r(r6),r(r7),r(r8),r(r9)\qs
4. }

. forvalues i=78(1)100 {
2. _pctile lw if year==`i´, p(10 20 30 40 50 60 70 80 90)
3. mat qs = 4,`i´,r(r1),r(r2),r(r3),r(r4),r(r5),r(r6),r(r7),r(r8),r(r9)\qs
4. }

. mat colnames qs = serie year q10 q20 q30 q40 q50 q60 q70 q80 q90

. clear

. svmat qs, name(col)
number of observations will be reset to 92
Press any key to continue, or Break to abort
number of observations (_N) was 0, now 92

. reshape wide q*, i(year) j(serie)
(note: j = 1 2 3 4)

Data long -> wide

Number of obs. 92 -> 23
Number of variables 11 -> 37
j variable (4 values) serie -> (dropped)
xij variables:

q10 -> q101 q102 ... q104
q20 -> q201 q202 ... q204
q30 -> q301 q302 ... q304
q40 -> q401 q402 ... q404
q50 -> q501 q502 ... q504
q60 -> q601 q602 ... q604
q70 -> q701 q702 ... q704
q80 -> q801 q802 ... q804
q90 -> q901 q902 ... q904

. qui replace year=1900+year

.

. local k=10

. while `k´<=90{
2. twoway scatter q`k´3 q`k´4 q`k´1 q`k´2 year, c(l l l l) ms(p p p p) ///

> lwidth(vthick vthick thick thick) lpattern(dash solid dash solid) ///
> legend(off) xtitle("year",size(large)) ytitle("log wage",size(large)) ///
> xlabel(,labsize(large)) ylabel(,labsize(large)) name(q`k´,replace)
3. qui graph export "q`k´.eps", replace
4. local k=`k´+10
5. }

5 Concluding remarks

In this article, we introduce a new Stata module called qregsel, which implements
a copula-based method proposed in Arellano and Bonhomme (2017b) to correct for
sample selection in quantile regressions. The use of the command is illustrated with
two empirical examples.

Additional empirical applications of the econometric method here implemented in-
clude the analysis of the gender gap between earnings distributions in Maasoumi and
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Figure 3: Wage quantiles, by gender
1

1
.2

1
.4

1
.6

lo
g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 10%

1
.2

1
.4

1
.6

1
.8

lo
g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 20%

1
.2

1
.4

1
.6

1
.8

2
lo

g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 30%

1
.2

1
.4

1
.6

1
.8

2
2
.2

lo
g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 40%

1
.4

1
.6

1
.8

2
2
.2

lo
g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 50%

1
.4

1
.6

1
.8

2
2
.2

2
.4

lo
g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 60%

1
.6

1
.8

2
2
.2

2
.4

2
.6

lo
g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 70%

1
.8

2
2
.2

2
.4

2
.6

lo
g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 80%

2
2
.2

2
.4

2
.6

2
.8

3
lo

g
 w

a
g
e

1980 1985 1990 1995 2000
year

τ = 90%
Notes: Quantiles of log-hourly wages, conditional on employment (solid lines) and corrected for
selection (dashed). Male wages are plotted in thick lines, while female wages are in thin lines.

Wang (2019), and the analysis of earnings inequality correcting for non-response in
Bollinger et al. (2019).
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